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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.
TECHNICAL MEMORANDUM NO. 568.

CONTRIBUTION TO THE THEORY OF PROPELLER VIBRATIONS,*
By F. Liebers.

Summary

Calculation of the torsional frequencies of revolving bars
with allowance for the air forces. Calculation of the flexural
or bending frequencies of revolving straight and tapered bars
in terms of the angular velocity oflrevolution. Calculation on
the basis of Rayleigh's principle of variation. Error estima-
“tion and the accuracy of the results. Application of the theory
to screw propellers for airplanes and the liability of propel-

lers to damage through vibrations due to lack of uniform loading.
Introduction

The construction of a propeller for static stresses by air
forces and centrifugal forces offers no special difficulties.
Nevertheless, propeller failures continue to occur, generally
with very unfortunate results, Especially since in recent;?ime,
wood propellers are being increasingly replaced by light-metal
propellers, there have been many accidents ascribable to fail-
ures resulting from the vibration of the propeller blades.

The possibility of the production and continuance of ﬁropel-

ler vibrations ig readily understood. The propeller revolves

*1Zur Theorie der Luftschraubenschwingungen." From Zeitschrift
fUr technische Physik, Vol. X, 1929, pp. 361-369.
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near the airplane and consequently in a region of disturbed air
flow. A propeller behind the wing is especially disturbed by
the vortex trail of the wing. On multi-engine airplanes, it
sometimes happens that the different propeller circles overlap
one another. Such influences alter the flow velocity and the
angle of attack of the propeller blades, when they enter the
turbulent region. Consequently, the propeller loading varies
ot different points. These disturbances, which generally de-
pend on the revolution speed, couse propeller vibrations.

We do not yet have any accurate knowledge of the phenomenon
of propeller vibrations. In the most common case, there are
both torsional and flexural vibrations. We have no way of de-
termining, however, which is the more dangerous. In order to
obtain an insight mathematically, we will first inquire as to
where the natural frequencies of the propeller blades lie for
torsional and flexural vibrations, and which kind of vibrations
can produce resonance as a result of disturbances due to the
revolution speed;

By disregarding one of the kinds of vibration, we arrive
at somewhat too large frequencies. From the standpoint of vi-
bration resistivity, that form of propeller is therefore the
best for which each kind of vibrations occurs independently of
the other. The difference between the natural frequencies cal-~
culated here and the frequencies of the combined vibrations

cannot be very great, however, since (as will be shown) the tor-
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siongl and flexural frequencies differ greatly.

Torsional Vibrations

Preliminary Assumptions

Since we are not‘here considering a theory of the torsional’
vibrations of a propeller, but a mathematical estimétion as to
whether a normal propeller can be endangered by torsional vi-
brations, it is only necessary to calculate on the basis of very
simple assumptions.

For this purpose, the actual propeller blade, which is ta-
pered and warped from root to tip, is replaced by a blade of uni-
 form cross section and torsional moment of inertia. Tapered
blades will then have higher frequencies than the ones thus ob-
tained.

Statement of Problem

If the air forces are disregarded, the revolution of the
blade does not affect the torsion, since the centrifugal force
vields no component at right angles to the blade: Hence we have

the equation

2 Aa 92 Aa
J.B__-_ =0 Jy 282
5 t° 473 %2

in which A o is the angle of torsion with respect to the posi-
tion of equilibrium; x, the length coordinate in the direction
of the propeller radius; J, the inertia moment of a blade el-

ement of unit length about the axis of rotation; Jg» the cross-—
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sectional moment against torsion; G, the modulus of shear;
and t, the time,
To this equation there belongs another term which takes the

alr forces into consideration:

S® AG _ o 3% Aa
8 t° 9 5 52
5
) ¢
_-g (w? x® + v®) bgo%;é? A a (1)

The second term represents the additional moment about the axis
of rotation, which is produced by the air forces, when the an~

gle of attack a is changed by the torsional vibration. ¢, 1is

the nondimensional moment coefficient of the alr force about the

axis of rotation, It can be derived from wind-tunnel tests. p

is the air density and w2 x® + v® the resultant velocity
with the components w x = tangential velocity and v = flight
velocity, b 1is the blade width.

The statement of the problem assumes the vibrations to be
slow. Both the rotational velocity 3 A /3 t and the related
alteration of the effective angle of attack of a blade element
are disregarded, as also the effect of the vortices periodic-
ally relegsed by the vibrating blade. The insignificance of
the resulting error is shown by the consideration of the reduced
frequencyy* which is a criterion for the slowness of a blade

vibration. The reduced frequency of a propeller blade is found

*Birnbaum, "Das ebene Problem des schlagenden Flugels," Zeit-
schrift fur angewandte Mathematik und Mechanik, 1934.
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to be from 10 to 100 times smaller than that of a normal air-
plane wing. |

Solution of the Torsional Equation

The lowest natural frequency of the vibration represented

by equation (1) is obtained by the formula

-

Aa (x,t) = ¥ (x) sin M t.

Hence equation (1) becomes:

dv.agz 3 Cm | _ _
J Gq 3 <7 [J No- > (w2 % + v3) V? - y=20 (3)

Equation (2) can be integrated in the form of an infinite con-
verging series, * The solutlon of the latter, according to the

...............

frequency A\, reads

2 _gvz bR ~—-——-—a °m
+ A - g a (3)
J 13 J J

Thereby, with a very good degree of accuracy,

A_1-0.08 k-1 -0.1738 k + 0,0148 k°

k being a nondimensional constant:

3 Cm

P3o w? b* 14

k =
3 G Jg

*As Professor Reissner informs me, the effect of the air forces
can be estimated (even without solv1ng equation (23) ) by assuming
that Jop/da increases quadTatically from the tip to the root of
the blade. Then equation (2) becomes an ordinary vibration equa-
tion with constant coefficients. In this comnection, however,
the flight speed v must also be neglected.
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A is zero when the revolution speed is ® = 0. The second term
under the radical disgppears when the flight speed is v = 0.

In this case equation (3) assumes the known value

ki G J
— a
A 53 / T (4)

Result s

If we calculate, according to equation (3), the torsional
frequency for thin-bladed metal propellers at ordinary revolu-
tion speeds (1000-1500 re.p.m.) and flight speeds, we obtain
values of the order of magnitude A = 6000-7000 min ‘. On the
other hand, equation (4) yields frequencies only about 1.5%
higher,

We thus obtain the remarkable result that the air forces
have no gppreciable effect on the vibration frequency of a pro-
peller, This result is particularly impressive for an aeronau-
tic engineer who has been accustomed to give quite a different
weight to the air forces in comparison with the elastic and
inertia forces.

A second result is furnished by the calculation that the
torsional frequencies of ordinary propellers differ so widely
from the frequency of the impulses connected with the revolu-
tion speed, that resonance in the form of torsional vibrations

does not enter into the question.
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Bending Vibrations

Preliminary Assumptions

After finding that the torsional vibrations can hardly en-
danger the propeller, the next step is to investigate the flex-
ural vibrations. In calculating the flexural or bending fre-
quency of a revolving propeller blade, it is to be noted that,
due to the centrifugal force, the curve of the bending moments
is a function of the angular velocity of the propeller and also-
that the bending frequency depends on the revolution speed,

It seems practically impossible to determine the line of elas-

tic vibration by solving the commonly employed integral-differ-
entlal equation for the bendlng vibrations of a revolving pro-

peller, Therefore the bending curve is here sought by the use

of the variation principle of Rayleigh ("Theory of Sound," Vol.
I, Sections 88-89), according to which, among all the possible

bending curves, that one is used for which the frequency is the
lowest,

This calculation requires ideal preliminary assumptions.
Hence the propeller blade is again regarded as a simple beam or
bar. The bent and twisted shape of the blade is therefore dis-
regarded. In oxder, however, to come nearer the reality in one
important point, the problem is treated both for uniform and
variable cross sections and also for a variable cross—sectional
inertia moment. Thereby the cross section and the inertia mo-

ment according to the power curves are assumed to vary with the



R (1- )] ¢

radius. Cross section: F

i

(5)

Inertia moment: J

it

X
l
? i < <
b (L-§€) j0o=¢E8=1

x being the distance of a cross section from the middle point
and 1 the blade length. The exponents ¥ and <4 are variable
parameters, to be adapted to the given propeller. (According

to ‘the measurements of ordinary propellers k ~ 1 and |

% = 23 ~ 3.5.)

Furthermore, it is assumed that the bending vibrations are
perpendicular to the plane of revolution of the propeller blades.
The more common case, in which they are at an angle to the plane
of revolution, can be similarly treated without difficulty.
Lastly, the effect of the air forces can be disregarded, which
is justified by a mathematical calculation, the same as for the

torsional vibrations.

The Method

»

The calculation of the bending frequency of the revolving
propeller blade, on the basis of the Rayleigh principle, can be
accurately made by the method of the calculus of variations.

In the present instance only the so-called "direét“ method is
applicable. The initially unknown line of elastic vibration
takes the form of an infinite series y (€) = T cy £y (£),
Whereby the functions £, form a completely fixed orthogonal

system, so that, through the theorem, any bending line can be
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determined to the desired accuracy.

This method is troublesome, however, and does not always
yield a satisfactory solution. We can simplify the present
variation problem considerably by transforming it into an ordi-
nary minimum problem. This can be accomplished by employing
only a certain, but physically grounded group of simple infi-
nitely many bending curves in concurrence for the given mini-
mum problem. For this purpose a group of curves was selected
as follows,

In the case of a beam of uniform crosg section fixed at
one end and without centrifugal forces, the line of elastic vi-
bration practically coincides with the static bending from its
own weight (the frequency difference, calculated on the assump-
tion of one or the other curve, being less than 0.5%). We now
first develop, from the mathematically simple static bending
curve, a group of curves by their constant deformation in the
direction of the stretching effect of the centrifugal force
which increases with the revdlution speed, Moreover, since
tapered propeller blades are to be included in the scope of the
calculation, we must also see that the basic group of elastic
curves includes those produced from the bending curves for cyl-
indrical bars by constant deformation in the direction of an
enlargement of the mean bend. 1In a group of bending curves
selected from these viewpoints, the difference cannot be very

great between the true elastic curve of the rotating cylinder
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or tapered bar and one of the infinitely many curves of the
plotted group. It cannot be very great, especially when the
four end conditions and the uniformity conditions of the prob-
lem are satisfied by all the curves of the group., (In general
there is the advantage that Rayleigh's theorem expresses a min-
imum condition. In the vicinity of a minimum the deviations
are naturally small,)
The following single-parameter group of functions for the

lines of elastic vibration satisfies all the above requirements.

, 3 1 n+3
Yy;ixn) = ——=[(1-8 +(n+3) £-1] (62

n‘ is the variable parameter. For n = 1, equation (6) gives
the bending curve at the load produced by the weight of the
blade. For n < 1, the curves 6 correspond to the bending
curves for tapered blades at vanishing centrifugal forces.
The four end conditions, that at the point of fixation (& = 0)

the amplitude (y = 0) and the differential quotient (y' = 0)

it

vanish and at the free end (¢ = 1) +the bending moment (y" = 0)
and the shearing force (y''= 0) all equal zero, are all satis—
fied by formula (€) for n > 0. The group of curves 8 is plot-
ted in Figure 1. The strongly curved lines are available as
elastic lines for small revolution speeds and centrifugal forces.
With increasing revolution speed, the flatter curves apply,
which become continually flatter, due to the centrifugal force,

until they become straight at infinite revolution speed, where
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the elastic forces are negligible.
Calculation of the Bending Frequency

The frequency is determined by the Rayleigh method with
the aid of the energy theorem according to which the kinetic
energy must equal the sum of the deformation energy and centrif-
ugal energy for the maximum amplitude of vibration. (The cen~
trifugal energy is the product of the centrifugsal force and the
radial displacement of its point of application during a vibra-

tion.) The energy equation is

pm 2 ,1 2
L d t =
leé}?y £

E
3 1®

1 .
J y"® 4
é y ¢

+%I-ﬂ zw?{;{{fy"’" dE}FEd&

(Sﬁodola, "Dampf- und Gasturbinen," paragraph 195). p, denotes
the density of the materisl and E the modﬁlus of elasticity.
If the values for F(!{) and J(£) (equation 5) and the inde-
terminate expression for the 1iné of elastic vibrationx(equation
6) are introduced, then equation (7), solved acéording to the
frequency A, yields A as a function of the parameter n.

For given constructional quantities (1, F, J, E, Pp) and a
given revolution speed @ of the propeller, we can therefore
find the n for which A becomes a minimum,

The solution of equation (7), according to the frequency
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A, can be written*

E Jo
= —— X, (n,K,98) + w? X, (n,k). (8)
Py Fo U .

For the case of zero rotation (w = 0), the second term

drops out, and the bending frequency is

2 E Jo

)\.zw:o = >\-O m lmin (n' ,K,‘&) (9)

It is intended to indicate by n!' that the minimum of the func-

tion X, has already been found. lein is a constant for

certain values of & and ¢. Equation (8) can now be written

2 _ X, (n,k,9) 2
Moo= Xipin (0',K,9) oo+ X (n, K )e? (10?
or
- ¥ W\’
(Ko/ =X, (n,k,8) + X, (n,x) (XE/ (11)

-

The equétion for N\ is homogeneous in \, A, and . Hence
there are only two fundamental variables, A/Ao and w/\g,
i.es, for all propellers of like taper, a single curve is suffi-
cient, namely A/A, plotted againét w/A,. This is an impor-

tant simplification. In Figure 3, A/MA, 1is plotted against

w/Nh, for various tapers k, ¢. Figure 2 was plotted with the
aid of equation (11), by determining the parameter n for dif-

ferent values of /A, so as to make A/N, a minimum,

*A detailed description of the method of calculation, accompanied
by explicit formulas, will appear in one of the early numbers of
"Luftfahrtforschung" as a report of the Deutsche Versuchsanstalt
fur Luftfahrt,
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Hence we have in Figure 2, for every propeller of any
strength, of any dimensions and of any taper (ise., for any value
of Ko), a chart from which the bending frequency at any revolu-
tion speed can be determined in a feﬁ seconds. Of course the
frequency A, must be previously found from equation (9). This
is done for the practically important cases of uniform taper
(¢ = 1) and between & = 0 and 9 = 3 of varying reductiom of
the cross—sectional inertia moment (Fig. 3). Figures 2 and 3
answer, once for all, the question regarding the bending fre-
quency of any propeller in terms of the revolution speed, In
cases where it seems necessary or advisable, A, ocan be deter-
mined experimentally in a simple manner, instead of taking it
from Figure 3.

The different curves of Figuie 8, for different pairs of
values of Kk and 8, differ but little in the practical range
of the k and & wvalues. Noticeable discrepancies occur only
at very great tapers. We find, therefore, that two propellers
(or beams), differing in dimensions and material constants
(within broad limits) and even in taper, but having like natural
frequencies, have nearly the same bending freduencies even dur-
ing rotation.

The relative position of the curves in Figure 2 is correct,
showing that the frequency is increased by increasing the taper.
For the same cross—sectional taper, the propeller with the great-
er reduction of the inertia moment has the smaller natural fre-

guencies,
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If it is desired to dispense with the chart, good approxi-
mation formulas can be developed for the plotted curves. The
following is a good interpolation formula for the practical

tapers. For

0= T TR Ao (8 Ao + 7 W)
For 0.)>3 )s.__l+(.0
R A

Accuracy of the Calculation*

In support of the adopted method of calculation, we make
the following estimate of errors.' The actual bending frequen-
cies, according to Rayleigh's theorem on which our method is
based, cannot be greater than those found here.

If we consider equation (11) for ()s./)xo)2 and assume that
not the bending lines according to equation (8) but the true
bending lines are taken as the basis of the calculation. Then
there is no change in the representation of the frequency and
equation (11) is absolutely correct. ZEquation (11) (now inde-
pendent of any physical significance) reaches its absolute min-
imum, however, when all of the summands (terms in the summation)
are as small as possible. Otherwise X\ would not equal A,

for ® = O, The same is true of the function X,. If X,uip

*This section goes into greater detail than the rest of the lec-
ture, since it seems important as proof of the method of calcu-
1a,'t ion.




N.A.C.A. Technical Memorandum No. 568 15

were not equal to 1, then, in the absence of elasticity (Ao = 0),
A would not equal zero. It is obvious that such must be the
case from the simple vibration calculation for the fiber under
the influence of the centrifugal force alone (sling).*

The minimum value of equation (11) is therefore 1 + Qu/ko)a.
For the frequency {(A/Ay)°, however, this is only a lower limit
(Schranke) which is never used** because the minimum of a sum of
functions is only equal to the sum of the minima of the individ-
ual summands, when the latter are obtained for the same values
of the variables. Obviously that is not the case here, since
the bending lines for A, =0 and ® = 0 are very different
(different values of n in expression 6. We therefore have

the inequality

A w\a
> 13
Ao /1+(X5/ ( )
or AR > kg + ©? j

Since this relation was deduced independently of the quantities

kK and ¥, it applies quite generally to every type of beam.**

*pAftention is called to the fact that the group of adopted
bending lines (equation B8) is already so favorable, that even the
minimum of our function X.(n,k) has the value 1, as in the case
of the assumption of the true elastic lines.

**In contrast with the lower limit (Grenze) which is actually
reached, o
*¥xAs I subsequently learned, this lower 1limit (Schranke) which
was used for the present special case, was contained in a gener-
al theorem of Lamb and Southworth (Proc. Roy. Soc., Vol. 99, 1931),
according to which the square of the frequency of an elastic sys-
tem, subjected to several forces, which, independently of one an-
other, affect the potential energy of the system, is always
greater than the sum of the freguency squares which the system
would have if only one of the forces acted on the system.
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In Figure 3 the lower limit (Schranke) (equation 12), which holds
for all propellers, is represented by a dash line,

Moreover, Figure 2 shows the greatést’conoeiVable per cent
error. In the most unfavorable case for propellers of the taper
under consideration, it is about 5% and decreases toward zero
both with vanishing and with increasing centrifugal force. As
a matter of fact, the discrepancies should be considerably
smaller than indicated, because the frequencies, calculated on
the basis of the bending lines (equation 6), come decidedly
nearer the reality than the values of the lower limit (Schranke),
which has only a formal mathematical significance but no phys-
ical import. For rough calculations, however, the simple form-
ula (13) can be used with good results, In using this formula,
one would surely be on the safe side.

Up to this point, the error estimation has referred to the
functiom A/A, in terms of w/A,. It still remains to test
the accuracy of the calculated values A, and the value of
X, min (n,k,%) in equation (2). In the case of the cylindrical

= 13,36, the exact

bar (k = % = 0) it is found that X, .,

value being
E Jo
2 — [ R )
AO — 12‘ 559 LI J pm FO 14,
The agreement is therefore complete.
There are no accurate data available for the comparison of

the static frequency (Standfrequenz) of tapered blades. Hence
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we resort to the approximate data of Hort* for our investigation.
On the basis of Hort's deductions we obtain, for example,

Jo E

Al = 51,6 ———b
° P Fo 1*

for the case of simultaneous linear decrease of cross section
and moment of inertia. In this case, according to0 our calcula-
tion (Fig. 3), X,ps,= 51.10. The difference is less than 1%.
In fact, this value, as the smaller according to Rayleigh's
theorem, is the more nearly correct one., Likewise, according to
Hort, the numerical factor in A, 1is 43.75 for the case of 1lin-
.ear taper of the cross section and of quadratic decrease in the
inertia moment, while we obtaim 40,75 (Fig. 3). In this case,
the latter value is about 7% better. The difference is still
more noticeable in case of greater tapers. The reason lies in
the fact that the Hort formulas apply only to slightly tapered
bladese**

On the basis of this comparison, the hers-calculated bend-
ing frequencies are found to be useful in the absence of cen~
trifugal forc§s and to surpass the results of previous calcula-
tions. If A, is experimentally determined in unusual cases,

the calculation of the frequencies for different angular veloci-

~*W. Hort, "Berechnung der mlgentone nicht glelchformlger ine-
besondere verjungter Stabe," Zeitschrift fUr technische Phy31k
Vol., VI, 1935, p. 181,

**The reason does not lie in the fact that, for example, in the
case of quadratic reduction of the 1nert1a moment J = Jo(1-£)
the pertinent theorem of Hort reads J = Jo(1-£-1/4 s1n11%
since the two theorems can hardly be dlstlngulshed numerlcally.
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ties is made according to Figure 2 with the above-mentioned accu-
racy.
The error estimates indicate that the accuracy required in

practice is generally excelled by the above method of calculation.
Comparison with Older Formulas

The above results regarding flexural vibrations are of gen-
eral importance independently of the problem of propeller vibra-
tions. The formulas have the advantage over older formulas of
being more accurate and of being applicable throughout the whole
range of angular velocities from ®w =0 t0 W= =,

The known formulas for the bending frequency of rotating

beams have the form

+ 0, w? (13)

where €, and C, are constants. This formula represents a good
'approiimation only within a comparatively small range of W,
because equation (13) is based on only a single form of vibration,
which is more or less adapted to a very definite relation of elas-
tic force to centrifugal force. For example, if the frequency
according to equation (13) approaches the value N = 0, w?
with increasing ®, then A =w for o = o,

The first application of Rayleigh's line of reasoning to a
similar problem (bar at the edge of a ievolving disk) was made

to my knowledge by Stodola. The formula used by him cannot be
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transferred, hbwever, to the case of an aircraft propeller, as
it would give AN <« w for large w in contradiction with equa~
tion (12). From the standpoint of the strictly formulated theo-
rem of Rayleigh, it should be noted regarding'Stddola's calcu~
lation that the proposed changes in foam represent no possible
bending-vibration curves, since the/ignditions at the free end
of the bar are not satisfied. This is expressed in Stodola's
formula corresponding to our equation (8), in that the former,
by consistent treatment, would yield a physically absurd result.
This assumption seems very opportune because it follows (especi-
ally in still more intricate problems than the one under consid-
eration) that Rayleigh's theorem should be employed in the strict-.
est possible form, in order to avoid wrong conclusions.

A previous investigation, which yielded a result related to
formula (13), was made by Seuthwell and Gough.* In their report,
the true frequency is estimated by the formation of an upper
and a lower 1limit. The latter was deduced from the above-
mentioned theorem of Lamb and Southwell in agreement with the
inequality 128. The upper 1limit, however, has the form 13, so
that, with increasing ®, the distance betweeﬁ the upper and

lower limits can be made as great as desired,

*British A.R.C. Reports and Memoranda No. 766: "The Free Trans-
verse Vibration of Airscrew Blades, 1931-22.
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Practical Results

We first find that the natural frequency for bending is al-
ways greater than the induced frequency w. This is unfavorable,
since it is only when the induced frequency is considerably above
the natural frequency that (with a slight internal damping) we
can calculate on a complete damping of the vibrations, It
depends also on how closely the natural frequencies approach the
revolution speeds for propellers of the usual dimensions.

In Figure 4 (curves I-IV) the bending frequencies are plot-
ted against the angulér velocity for an especially thin—bladgd
metal propeller on the basis of Figure 3. Curves I-IV corre-
spond to four propellers of like root cross section but differ-
ent tapers. I is for the cylindrical bar, while III and IV (lin-
ear cross-—sectional, quadratic or cubical moment of inertia re-
duction) correspond to practical propeller forms,

In order to determine the danger limits for a given propel-
ler blade, one must know the vibration resistivity of the blade,
as expressed by the maximum permissible amplitude, and also the
magnitude of the disturbing force. Both of these can be deter-

mined.* Then we can conclude, on the basis of the known reso-

*The impulse received by a propeller in the vicinity of an air-
plane wing (due to variation in the flow velocity and the angle
of attack of the propeller blade) can be approximately calculat-
ed with the aid of simple formulas of the wing theory. For the
turbulent field behind a wing, we already have at our disposal
the results of flight tests made for another purpose. (M. Schre
"Ueber Profilwiderstandmessung im Fluge nach dem Impulsverfahren,'
Luftfahrtforschung, May 18, 1938. For translation, see N.A.C.A.
Technical Memorandums Nos., 557-and 558: "Measurement of Profile

Drag on an Ajrplane in Flight by the Momentum Method," Parts I
and II, March, 1930.
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nance curves, that the amplitudes, at a certain ratio of the in-
duced frequency to the natural frequency, exceed the bounds estab-
lished by the vibration resistivity. If'it be provisionally as-
sumed that this 1limit wgs reached for /A = 0.8, then (Fig. 4)
the points of intersection of the straight line AN = 1,35 ®

with the various frequency curves indicate the revolution speeds
at which the given propeller blade begins to develop dangerous
vibrations, The cylindrical blade was already endangered at

® = 70 sec.”™ ~ 700 T.p.m,; the tapered blade III first at .about
1500 Tepem.

On the other hand, the frequencies calculated for a consid-
erably larger propeller (curve V) are plotted in Figure 4. The
propeller has the dimensions of a Reed propeller, as used on
three—engine commercial airplanes (Fig. 5)s Many propellers of
this type have been damaged in flight.

From the course of curve V, it is seen that, in the region
of normal revolution speeds, the natural frequencies of the pro-
peller are certainly not in the neighborhood of the revolution
speed, Very likely, however, they assume values twice as great
as the revolution speed. In fact, this pronounced resonance be-
gins between 1000 and 1300 TepPelte

If we consider the field of flow of a propeller of a three-
engine airplane (Fig. 5), it is obvious that the propeller
passes through two disturbed regions at each revolution. For

the lateral propellers, both impulses occur in passing the}wing
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at a distance of only 1/3 the wing chord. A% the inner point,
they also encounter the slipstream of the middle propeller,

which is spread out by the effect of the fuselage. The middle
propeller functions at about double the distance of the side pro-
pellers from the wing. It is only very slightly affected by

the wing, as well as by the other propellers. In fact, central
propellers have fewer disadvantages, though not entirely free
from them.

On the whole, the above practical example shoWws a very good
agreement between calculation and experience. The calculation
shows further (Fig. 4) that, in one case, it would be better,
under certain conditions, to use a more flexible propeller with
such bending‘frequenoies that, under normal conditions, the in-
duced frequency would be greater than the natural frequency.

The vibrations would then be well~damped.
Conclusions

The practical results of the investigation are:
1. From the standpoint of resistivity to vibrations, that
propeller is the most favorable for which the vibrations for

each degree of freedom can take place independently of the other.

3e The torsional vibrations of propellers are generally so
high, that the danger of resonance from the vibrations, which

equal or double the revolution speed, is eliminated,
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3, The elastic and inertia forces exceed the air forces
so much that the latter are practically negligible for the fre-

quencies of the propeller vibrations.

4, Flexural vibrations seem to be the principal cause for
propeller failures. The preliminary calculation of the bending
frequencies of propeller blades in terms of the T.p.m. can be
made mbre quickly and with greater accuracy by the method de-
scribed.

5., Every propeller develops resonance vibrations at suffi-

ciently high revolution speeds,

6s A decided cross-—sectional taper is favorable for in-
creasing the bending frequency, but it is better for the moment

of inertia to be everywhere as great as possible.

7« The location of the propeller with respect to the wing
is very important. Even very strong propellers may be endan-
gered by developing resonance vibrations from impulses of double
the Tepemme due to unfavorable installation. In such cases, a

more flexible propeller is sometimes preferable.

Translation by Dwight M. Miner,
National Advisory Committee
for Aeronautics.
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Fig.l Lines of elastic vibration (eq.8)
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Fig.4 Bending frequencies of different propellers

plotted against the angular velocity.

Fig.5 Arrangement of propellers on 3 englde airplane
(from "Flugsport" 19237,p.489).



